Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Bilevel Asynchronous Vertical Federated Learning with Backward Updating (2103.00958v1)

Published 1 Mar 2021 in cs.LG

Abstract: Vertical federated learning (VFL) attracts increasing attention due to the emerging demands of multi-party collaborative modeling and concerns of privacy leakage. In the real VFL applications, usually only one or partial parties hold labels, which makes it challenging for all parties to collaboratively learn the model without privacy leakage. Meanwhile, most existing VFL algorithms are trapped in the synchronous computations, which leads to inefficiency in their real-world applications. To address these challenging problems, we propose a novel {\bf VF}L framework integrated with new {\bf b}ackward updating mechanism and {\bf b}ilevel asynchronous parallel architecture (VF{${\textbf{B}}2$}), under which three new algorithms, including VF{${\textbf{B}}2$}-SGD, -SVRG, and -SAGA, are proposed. We derive the theoretical results of the convergence rates of these three algorithms under both strongly convex and nonconvex conditions. We also prove the security of VF{${\textbf{B}}2$} under semi-honest threat models. Extensive experiments on benchmark datasets demonstrate that our algorithms are efficient, scalable and lossless.

Citations (64)

Summary

We haven't generated a summary for this paper yet.