Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

k-apices of minor-closed graph classes. I. Bounding the obstructions (2103.00882v4)

Published 1 Mar 2021 in math.CO, cs.DM, and cs.DS

Abstract: Let $\mathcal{G}$ be a minor-closed graph class. We say that a graph $G$ is a $k$-apex of $\mathcal{G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to $\mathcal{G}.$ We denote by $\mathcal{A}_k (\mathcal{G})$ the set of all graphs that are $k$-apices of $\mathcal{G}.$ We prove that every graph in the obstruction set of $\mathcal{A}_k (\mathcal{G}),$ i.e., the minor-minimal set of graphs not belonging to $\mathcal{A}_k (\mathcal{G}),$ has size at most $2{2{2{2{\mathsf{poly}(k)}}}},$ where $\mathsf{poly}$ is a polynomial function whose degree depends on the size of the minor-obstructions of $\mathcal{G}.$ This bound drops to $2{2{\mathsf{poly}(k)}}$ when $\mathcal{G}$ excludes some apex graph as a minor.

Citations (12)

Summary

We haven't generated a summary for this paper yet.