Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme Superposition: High-Order Fundamental Rogue Waves in the Far-Field Regime (2103.00337v1)

Published 27 Feb 2021 in nlin.SI, math.AP, and nlin.PS

Abstract: We study fundamental rogue-wave solutions of the focusing nonlinear Schr\"odinger equation in the limit that the order of the rogue wave is large and the independent variables $(x,t)$ are proportional to the order (the far-field limit). We first formulate a Riemann-Hilbert representation of these solutions that allows the order to vary continuously rather than by integer increments. The intermediate solutions in this continuous family include also soliton solutions for zero boundary conditions spectrally encoded by a single complex-conjugate pair of poles of arbitrary order, as well as other solutions having nonzero boundary conditions matching those of the rogue waves albeit with far slower decay as $x\to\pm\infty$. The large-order far-field asymptotic behavior of the solution depends on which of three disjoint regions $\mathcal{C}$, $\mathcal{S}$, and $\mathcal{E}$ contains the rescaled variables. On the regions $\mathcal{C}$ and $\mathcal{S}$ we show that the asymptotic behavior is the same for all continuous orders, while in the region $\mathcal{E}$ the discrete sequence of rogue-wave orders produces distinctive asymptotic behavior that is different from other cases.

Summary

We haven't generated a summary for this paper yet.