Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Singly and Doubly Even Binary [72,36,12] Self-Dual Codes from $M_2(R)G$ -- Group Matrix Rings (2102.12863v1)

Published 25 Feb 2021 in cs.IT and math.IT

Abstract: In this work, we present a number of generator matrices of the form $[I_{2n} \ | \ \tau_k(v)],$ where $I_{kn}$ is the $kn \times kn$ identity matrix, $v$ is an element in the group matrix ring $M_2(R)G$ and where $R$ is a finite commutative Frobenius ring and $G$ is a finite group of order 18. We employ these generator matrices and search for binary $[72,36,12]$ self-dual codes directly over the finite field $\mathbb{F}_2.$ As a result, we find 134 Type I and 1 Type II codes of this length, with parameters in their weight enumerators that were not known in the literature before. We tabulate all of our findings.

Citations (4)

Summary

We haven't generated a summary for this paper yet.