Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blended Dynamics Approach to Distributed Optimization: Sum Convexity and Convergence Rate (2102.12647v1)

Published 25 Feb 2021 in math.OC, cs.SY, and eess.SY

Abstract: This paper studies the application of the blended dynamics approach towards distributed optimization problem where the global cost function is given by a sum of local cost functions. The benefits include (i) individual cost function need not be convex as long as the global cost function is strongly convex and (ii) the convergence rate of the distributed algorithm is arbitrarily close to the convergence rate of the centralized one. Two particular continuous-time algorithms are presented using the proportional-integral-type couplings. One has benefit of `initialization-free,' so that agents can join or leave the network during the operation. The other one has the minimal amount of communication information. After presenting a general theorem that can be used for designing distributed algorithms, we particularly present a distributed heavy-ball method and discuss its strength over other methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.