Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Cross Entropy and Maximum Likelihood Principle (2102.11887v3)

Published 23 Feb 2021 in quant-ph, cs.IT, cs.LG, hep-th, math.IT, and stat.ML

Abstract: Quantum machine learning is an emerging field at the intersection of machine learning and quantum computing. Classical cross entropy plays a central role in machine learning. We define its quantum generalization, the quantum cross entropy, prove its lower bounds, and investigate its relation to quantum fidelity. In the classical case, minimizing cross entropy is equivalent to maximizing likelihood. In the quantum case, when the quantum cross entropy is constructed from quantum data undisturbed by quantum measurements, this relation holds. Classical cross entropy is equal to negative log-likelihood. When we obtain quantum cross entropy through empirical density matrix based on measurement outcomes, the quantum cross entropy is lower-bounded by negative log-likelihood. These two different scenarios illustrate the information loss when making quantum measurements. We conclude that to achieve the goal of full quantum machine learning, it is crucial to utilize the deferred measurement principle.

Citations (8)

Summary

We haven't generated a summary for this paper yet.