Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence rates for gradient descent in the training of overparameterized artificial neural networks with biases (2102.11840v1)

Published 23 Feb 2021 in cs.LG, cs.NA, math.NA, and math.PR

Abstract: In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches reach their limits. However, it is still unclear why randomly initialized gradient descent optimization algorithms, such as the well-known batch gradient descent, are able to achieve zero training loss in many situations even though the objective function is non-convex and non-smooth. One of the most promising approaches to solving this problem in the field of supervised learning is the analysis of gradient descent optimization in the so-called overparameterized regime. In this article we provide a further contribution to this area of research by considering overparameterized fully-connected rectified artificial neural networks with biases. Specifically, we show that for a fixed number of training data the mean squared error using batch gradient descent optimization applied to such a randomly initialized artificial neural network converges to zero at a linear convergence rate as long as the width of the artificial neural network is large enough, the learning rate is small enough, and the training input data are pairwise linearly independent.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arnulf Jentzen (134 papers)
  2. Timo Kröger (3 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.