Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy-Step Off-Policy Reinforcement Learning (2102.11717v4)

Published 23 Feb 2021 in cs.LG, cs.AI, and cs.MA

Abstract: Most of the policy evaluation algorithms are based on the theories of BeLLMan Expectation and Optimality Equation, which derive two popular approaches - Policy Iteration (PI) and Value Iteration (VI). However, multi-step bootstrapping is often at cross-purposes with and off-policy learning in PI-based methods due to the large variance of multi-step off-policy correction. In contrast, VI-based methods are naturally off-policy but subject to one-step learning.In this paper, we deduce a novel multi-step BeLLMan Optimality Equation by utilizing a latent structure of multi-step bootstrapping with the optimal value function. Via this new equation, we derive a new multi-step value iteration method that converges to the optimal value function with exponential contraction rate $\mathcal{O}(\gamman)$ but only linear computational complexity. Moreover, it can naturally derive a suite of multi-step off-policy algorithms that can safely utilize data collected by arbitrary policies without correction.Experiments reveal that the proposed methods are reliable, easy to implement and achieve state-of-the-art performance on a series of standard benchmark datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.