Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement Learning via Frank-Wolfe Policy Optimization (2102.11055v2)

Published 22 Feb 2021 in cs.LG

Abstract: Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications, such as scheduling in networked systems with resource constraints and control of a robot with kinematic constraints. While the existing projection-based approaches ensure zero constraint violation, they could suffer from the zero-gradient problem due to the tight coupling of the policy gradient and the projection, which results in sample-inefficient training and slow convergence. To tackle this issue, we propose a learning algorithm that decouples the action constraints from the policy parameter update by leveraging state-wise Frank-Wolfe and a regression-based policy update scheme. Moreover, we show that the proposed algorithm enjoys convergence and policy improvement properties in the tabular case as well as generalizes the popular DDPG algorithm for action-constrained RL in the general case. Through experiments, we demonstrate that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jyun-Li Lin (1 paper)
  2. Wei Hung (4 papers)
  3. Shang-Hsuan Yang (1 paper)
  4. Ping-Chun Hsieh (31 papers)
  5. Xi Liu (83 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.