Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a notion of independence proposed by Teddy Seidenfeld (2102.10342v1)

Published 20 Feb 2021 in cs.AI and math.PR

Abstract: Teddy Seidenfeld has been arguing for quite a long time that binary preference models are not powerful enough to deal with a number of crucial aspects of imprecision and indeterminacy in uncertain inference and decision making. It is at his insistence that we initiated our study of so-called sets of desirable option sets, which we have argued elsewhere provides an elegant and powerful approach to dealing with general, binary as well as non-binary, decision-making under uncertainty. We use this approach here to explore an interesting notion of irrelevance (and independence), first suggested by Seidenfeld in an example intended as a criticism of a number of specific decision methodologies based on (convex) binary preferences. We show that the consequences of making such an irrelevance or independence assessment are very strong, and might be used to argue for the use of so-called mixing choice functions, and E-admissibility as the resulting decision scheme.

Citations (4)

Summary

We haven't generated a summary for this paper yet.