Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Architectural Decay as Predictor of Issue- and Change-Proneness (2102.09835v1)

Published 19 Feb 2021 in cs.SE

Abstract: Architectural decay imposes real costs in terms of developer effort, system correctness, and performance. Over time, those problems are likely to be revealed as explicit implementation issues (defects, feature changes, etc.). Recent empirical studies have demonstrated that there is a significant correlation between architectural "smells" -- manifestations of architectural decay -- and implementation issues. In this paper, we take a step further in exploring this phenomenon. We analyze the available development data from 10 open-source software systems and show that information regarding current architectural decay in these systems can be used to build models that accurately predict future issue-proneness and change-proneness of the systems' implementations. As a less intuitive result, we also show that, in cases where historical data for a system is unavailable, such data from other, unrelated systems can provide reasonably accurate issue- and change-proneness prediction capabilities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.