Papers
Topics
Authors
Recent
2000 character limit reached

Integer colorings with no rainbow 3-term arithmetic progression

Published 17 Feb 2021 in math.CO | (2102.08995v2)

Abstract: In this paper, we study the rainbow Erd\H{o}s-Rothschild problem with respect to 3-term arithmetic progressions. We obtain the asymptotic number of $r$-colorings of $[n]$ without rainbow 3-term arithmetic progressions, and we show that the typical colorings with this property are 2-colorings. We also prove that $[n]$ attains the maximum number of rainbow 3-term arithmetic progression-free $r$-colorings among all subsets of $[n]$. Moreover, the exact number of rainbow 3-term arithmetic progression-free $r$-colorings of $\mathbb{Z}_p$ is obtained, where $p$ is any prime and $\mathbb{Z}_p$ is the cyclic group of order $p$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.