Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Graph Learning with Unique Optimal Solutions (2102.08530v4)

Published 17 Feb 2021 in cs.LG, cs.MS, and cs.SI

Abstract: We consider two popular Graph Representation Learning (GRL) methods: message passing for node classification and network embedding for link prediction. For each, we pick a popular model that we: (i) linearize and (ii) and switch its training objective to Frobenius norm error minimization. These simplifications can cast the training into finding the optimal parameters in closed-form. We program in TensorFlow a functional form of Truncated Singular Value Decomposition (SVD), such that, we could decompose a dense matrix $\mathbf{M}$, without explicitly computing $\mathbf{M}$. We achieve competitive performance on popular GRL tasks while providing orders of magnitude speedup. We open-source our code at http://github.com/samihaija/tf-fsvd

Summary

We haven't generated a summary for this paper yet.