Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trees-Based Models for Correlated Data (2102.08114v2)

Published 16 Feb 2021 in stat.ME and stat.ML

Abstract: This paper presents a new approach for trees-based regression, such as simple regression tree, random forest and gradient boosting, in settings involving correlated data. We show the problems that arise when implementing standard trees-based regression models, which ignore the correlation structure. Our new approach explicitly takes the correlation structure into account in the splitting criterion, stopping rules and fitted values in the leaves, which induces some major modifications of standard methodology. The superiority of our new approach over trees-based models that do not account for the correlation is supported by simulation experiments and real data analyses.

Citations (7)

Summary

We haven't generated a summary for this paper yet.