Testing properties of signed graphs
Abstract: In graph property testing the task is to distinguish whether a graph satisfies a given property or is "far" from having that property, preferably with a sublinear query and time complexity. In this work we initiate the study of property testing in signed graphs, where every edge has either a positive or a negative sign. We show that there exist sublinear algorithms for testing three key properties of signed graphs: balance (or 2-clusterability), clusterability and signed triangle freeness. We consider both the dense graph model, where we can query the (signed) adjacency matrix of a signed graph, and the bounded-degree model, where we can query for the neighbors of a node and the sign of the connecting edge. Our algorithms use a variety of tools from graph property testing, as well as reductions from one setting to the other. Our main technical contribution is a sublinear algorithm for testing clusterability in the bounded-degree model. This contrasts with the property of k-clusterability which is not testable with a sublinear number of queries. The tester builds on the seminal work of Goldreich and Ron for testing bipartiteness.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.