Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tractable structured natural gradient descent using local parameterizations (2102.07405v10)

Published 15 Feb 2021 in stat.ML and cs.LG

Abstract: Natural-gradient descent (NGD) on structured parameter spaces (e.g., low-rank covariances) is computationally challenging due to difficult Fisher-matrix computations. We address this issue by using \emph{local-parameter coordinates} to obtain a flexible and efficient NGD method that works well for a wide-variety of structured parameterizations. We show four applications where our method (1) generalizes the exponential natural evolutionary strategy, (2) recovers existing Newton-like algorithms, (3) yields new structured second-order algorithms via matrix groups, and (4) gives new algorithms to learn covariances of Gaussian and Wishart-based distributions. We show results on a range of problems from deep learning, variational inference, and evolution strategies. Our work opens a new direction for scalable structured geometric methods.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets