Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Improved Estimators for Semi-supervised High-dimensional Regression Model (2102.07203v3)

Published 14 Feb 2021 in math.ST and stat.TH

Abstract: We study a linear high-dimensional regression model in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no response $Y$. We do not make any sparsity assumptions on the vector of coefficients, and aim at estimating $\mathrm{Var}(Y|X)$. We propose an estimator, which is unbiased, consistent, and asymptotically normal. This estimator can be improved by adding zero-estimators arising from the unlabelled data. Adding zero-estimators does not affect the bias and potentially can reduce variance. In order to achieve optimal improvement, many zero-estimators should be used, but this raises the problem of estimating many parameters. Therefore, we introduce covariate selection algorithms that identify which zero-estimators should be used in order to improve the above estimator. We further illustrate our approach for other estimators, and present an algorithm that improves estimation for any given variance estimator. Our theoretical results are demonstrated in a simulation study.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube