Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds on Dynamic Programming for Maximum Weight Independent Set (2102.06901v2)

Published 13 Feb 2021 in cs.CC and cs.DS

Abstract: We prove lower bounds on pure dynamic programming algorithms for maximum weight independent set (MWIS). We model such algorithms as tropical circuits, i.e., circuits that compute with $\max$ and $+$ operations. For a graph $G$, an MWIS-circuit of $G$ is a tropical circuit whose inputs correspond to vertices of $G$ and which computes the weight of a maximum weight independent set of $G$ for any assignment of weights to the inputs. We show that if $G$ has treewidth $w$ and maximum degree $d$, then any MWIS-circuit of $G$ has $2{\Omega(w/d)}$ gates and that if $G$ is planar, or more generally $H$-minor-free for any fixed graph $H$, then any MWIS-circuit of $G$ has $2{\Omega(w)}$ gates. An MWIS-formula is an MWIS-circuit where each gate has fan-out at most one. We show that if $G$ has treedepth $t$ and maximum degree $d$, then any MWIS-formula of $G$ has $2{\Omega(t/d)}$ gates. It follows that treewidth characterizes optimal MWIS-circuits up to polynomials for all bounded degree graphs and $H$-minor-free graphs, and treedepth characterizes optimal MWIS-formulas up to polynomials for all bounded degree graphs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.