Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On PyTorch Implementation of Density Estimators for von Mises-Fisher and Its Mixture (2102.05340v1)

Published 10 Feb 2021 in cs.LG and cs.MS

Abstract: The von Mises-Fisher (vMF) is a well-known density model for directional random variables. The recent surge of the deep embedding methodologies for high-dimensional structured data such as images or texts, aimed at extracting salient directional information, can make the vMF model even more popular. In this article, we will review the vMF model and its mixture, provide detailed recipes of how to train the models, focusing on the maximum likelihood estimators, in Python/PyTorch. In particular, implementation of vMF typically suffers from the notorious numerical issue of the Bessel function evaluation in the density normalizer, especially when the dimensionality is high, and we address the issue using the MPMath library that supports arbitrary precision. For the mixture learning, we provide both minibatch-based large-scale SGD learning, as well as the EM algorithm which is a full batch estimator. For each estimator/methodology, we test our implementation on some synthetic data, while we also demonstrate the use case in a more realistic scenario of image clustering. Our code is publicly available in https://github.com/minyoungkim21/vmf-lib.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub