Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heuristic Strategies for Solving Complex Interacting Stockpile Blending Problem with Chance Constraints (2102.05303v1)

Published 10 Feb 2021 in cs.NE

Abstract: Heuristic algorithms have shown a good ability to solve a variety of optimization problems. Stockpile blending problem as an important component of the mine scheduling problem is an optimization problem with continuous search space containing uncertainty in the geologic input data. The objective of the optimization process is to maximize the total volume of materials of the operation and subject to resource capacities, chemical processes, and customer requirements. In this paper, we consider the uncertainty in material grades and introduce chance constraints that are used to ensure the constraints with high confidence. To address the stockpile blending problem with chance constraints, we propose a differential evolution algorithm combining two repair operators that are used to tackle the two complex constraints. In the experiment section, we compare the performance of the approach with the deterministic model and stochastic models by considering different chance constraints and evaluate the effectiveness of different chance constraints.

Citations (10)

Summary

We haven't generated a summary for this paper yet.