Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A study on a feedforward neural network to solve partial differential equations in hyperbolic-transport problems (2102.04991v1)

Published 9 Feb 2021 in math.NA and cs.NA

Abstract: In this work we present an application of modern deep learning methodologies to the numerical solution of partial differential equations in transport models. More specifically, we employ a supervised deep neural network that takes into account the equation and initial conditions of the model. We apply it to the Riemann problems over the inviscid nonlinear Burger's equation, whose solutions might develop discontinuity (shock wave) and rarefaction, as well as to the classical one-dimensional Buckley-Leverett two-phase problem. The Buckley-Leverett case is slightly more complex and interesting because it has a non-convex flux function with one inflection point. Our results suggest that a relatively simple deep learning model was capable of achieving promising results in such challenging tasks, providing numerical approximation of entropy solutions with very good precision and consistent to classical as well as to recently novel numerical methods in these particular scenarios.

Citations (9)

Summary

We haven't generated a summary for this paper yet.