Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orbital Stabilization of Point-to-Point Maneuvers in Underactuated Mechanical Systems (2102.04966v4)

Published 9 Feb 2021 in eess.SY, cs.RO, cs.SY, and math.OC

Abstract: The task of inducing, via continuous static state-feedback control, an asymptotically stable heteroclinic orbit in a nonlinear control system is considered in this paper. The main motivation comes from the problem of ensuring convergence to a so-called point-to-point maneuver in an underactuated mechanical system. Namely, to a smooth curve in its state--control space, which is consistent with the system dynamics and connects two (linearly) stabilizable equilibrium points. The proposed method uses a particular parameterization, together with a state projection onto the maneuver as to combine two linearization techniques for this purpose: the Jacobian linearization at the equilibria on the boundaries and a transverse linearization along the orbit. This allows for the computation of stabilizing control gains offline by solving a semidefinite programming problem. The resulting nonlinear controller, which simultaneously asymptotically stabilizes both the orbit and the final equilibrium, is time-invariant, locally Lipschitz continuous, requires no switching, and has a familiar feedforward plus feedback--like structure. The method is also complemented by synchronization function--based arguments for planning such maneuvers for mechanical systems with one degree of underactuation. Numerical simulations of the non-prehensile manipulation task of a ball rolling between two points upon the "butterfly" robot demonstrates the efficacy of the synthesis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.