Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introduction to Machine Learning for the Sciences (2102.04883v2)

Published 8 Feb 2021 in physics.comp-ph, cond-mat.dis-nn, and cs.LG

Abstract: This is an introductory machine-learning course specifically developed with STEM students in mind. Our goal is to provide the interested reader with the basics to employ machine learning in their own projects and to familiarize themself with the terminology as a foundation for further reading of the relevant literature. In these lecture notes, we discuss supervised, unsupervised, and reinforcement learning. The notes start with an exposition of machine learning methods without neural networks, such as principle component analysis, t-SNE, clustering, as well as linear regression and linear classifiers. We continue with an introduction to both basic and advanced neural-network structures such as dense feed-forward and conventional neural networks, recurrent neural networks, restricted Boltzmann machines, (variational) autoencoders, generative adversarial networks. Questions of interpretability are discussed for latent-space representations and using the examples of dreaming and adversarial attacks. The final section is dedicated to reinforcement learning, where we introduce basic notions of value functions and policy learning.

Summary

We haven't generated a summary for this paper yet.