Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Asynchronous Parallel Nonconvex Optimization Under the Polyak-Lojasiewicz Condition (2102.04547v2)

Published 8 Feb 2021 in math.OC

Abstract: Communication delays and synchronization are major bottlenecks for parallel computing, and tolerating asynchrony is therefore crucial for accelerating parallel computation. Motivated by optimization problems that do not satisfy convexity assumptions, we present an asynchronous block coordinate descent algorithm for nonconvex optimization problems whose objective functions satisfy the Polyak-Lojasiewicz condition. This condition is a generalization of strong convexity to nonconvex problems and requires neither convexity nor uniqueness of minimizers. Under only assumptions of mild smoothness of objective functions and bounded delays, we prove that a linear convergence rate is obtained. Numerical experiments for logistic regression problems are presented to illustrate the impact of asynchrony upon convergence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.