Papers
Topics
Authors
Recent
2000 character limit reached

Applying the Affective Aware Pseudo Association Method to Enhance the Top-N Recommendations Distribution to Users in Group Emotion Recommender Systems

Published 8 Feb 2021 in cs.IR | (2102.04447v1)

Abstract: Recommender Systems are a subclass of information retrieval systems, or more succinctly, a class of information filtering systems that seeks to predict how close is the match of the user's preference to a recommended item. A common approach for making recommendations for a user group is to extend Personalized Recommender Systems' capability. This approach gives the impression that group recommendations are retrofits of the Personalized Recommender Systems. Moreover, such an approach not taken the dynamics of group emotion and individual emotion into the consideration in making top_N recommendations. Recommending items to a group of two or more users has certainly raised unique challenges in group behaviors that influence group decision-making that researchers only partially understand. This study applies the Affective Aware Pseudo Association Method in studying group formation and dynamics in group decision-making. The method shows its adaptability to group's moods change when making recommendations.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.