Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Self-duality of the lattice of transfer systems via weak factorization systems (2102.04415v2)

Published 8 Feb 2021 in math.AT

Abstract: For a finite group $G$, $G$-transfer systems are combinatorial objects which encode the homotopy category of $G$-$N_\infty$ operads, whose algebras in $G$-spectra are $E_\infty$ $G$-spectra with a specified collection of multiplicative norms. For $G$ finite Abelian, we demonstrate a correspondence between $G$-transfer systems and weak factorization systems on the poset category of subgroups of $G$. This induces a self-duality on the lattice of $G$-transfer systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.