2000 character limit reached
Learning Curve Theory (2102.04074v1)
Published 8 Feb 2021 in cs.LG and stat.ML
Abstract: Recently a number of empirical "universal" scaling law papers have been published, most notably by OpenAI. `Scaling laws' refers to power-law decreases of training or test error w.r.t. more data, larger neural networks, and/or more compute. In this work we focus on scaling w.r.t. data size $n$. Theoretical understanding of this phenomenon is largely lacking, except in finite-dimensional models for which error typically decreases with $n{-1/2}$ or $n{-1}$, where $n$ is the sample size. We develop and theoretically analyse the simplest possible (toy) model that can exhibit $n{-\beta}$ learning curves for arbitrary power $\beta>0$, and determine whether power laws are universal or depend on the data distribution.