Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Brownian Web as a random $\mathbb R$-tree (2102.04068v2)

Published 8 Feb 2021 in math.PR

Abstract: Motivated by [G. Cannizzaro, M. Hairer, Comm. Pure Applied Math., '22], we provide a construction of the Brownian Web (see [T\'oth B., Werner W., Probab. Theory Related Fields, '98] and [L. R. G. Fontes, M. Isopi, C. M. Newman, and K. Ravishankar, Ann. Probab., '04]), i.e. a family of coalescing Brownian motions starting from every point in $\mathbb R2$, as a random variable taking values in the space of (spatial) $\mathbb R$-trees. This gives a stronger topology than the classical one {(i.e.\ Hausdorff convergence on closed sets of paths)}, thus providing us with more continuous functions of the Brownian Web and ruling out a number of potential pathological behaviours. Along the way, we introduce a modification of the topology of spatial $\mathbb R$-trees in [T. Duquesne, J.-F. Le Gall, Probab. Theory Related Fields, '05] and [M. T. Barlow, D. A. Croydon, T. Kumagai, Ann. Probab. '17] which makes it a complete separable metric space and could be of independent interest. We determine some properties of the characterisation of the Brownian Web in this context (e.g.\ its box-counting dimension) and recover some which were determined in earlier works, such as duality, special points and convergence of the graphical representation of coalescing random walks.

Summary

We haven't generated a summary for this paper yet.