The Brownian Web as a random $\mathbb R$-tree
Abstract: Motivated by [G. Cannizzaro, M. Hairer, Comm. Pure Applied Math., '22], we provide a construction of the Brownian Web (see [T\'oth B., Werner W., Probab. Theory Related Fields, '98] and [L. R. G. Fontes, M. Isopi, C. M. Newman, and K. Ravishankar, Ann. Probab., '04]), i.e. a family of coalescing Brownian motions starting from every point in $\mathbb R2$, as a random variable taking values in the space of (spatial) $\mathbb R$-trees. This gives a stronger topology than the classical one {(i.e.\ Hausdorff convergence on closed sets of paths)}, thus providing us with more continuous functions of the Brownian Web and ruling out a number of potential pathological behaviours. Along the way, we introduce a modification of the topology of spatial $\mathbb R$-trees in [T. Duquesne, J.-F. Le Gall, Probab. Theory Related Fields, '05] and [M. T. Barlow, D. A. Croydon, T. Kumagai, Ann. Probab. '17] which makes it a complete separable metric space and could be of independent interest. We determine some properties of the characterisation of the Brownian Web in this context (e.g.\ its box-counting dimension) and recover some which were determined in earlier works, such as duality, special points and convergence of the graphical representation of coalescing random walks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.