2000 character limit reached
Extended Nappi-Witten Geometry for the Fractional Quantum Hall Effect (2102.03886v1)
Published 7 Feb 2021 in cond-mat.mes-hall, gr-qc, and hep-th
Abstract: Motivated by the recent progresses in the formulation of geometric theories for the fractional quantum Hall states, we propose a novel non-relativistic geometric model for the Laughlin states based on an extension of the Nappi-Witten geometry. We show that the U(1) gauge sector responsible for the fractional Hall conductance, the gravitational Chern-Simons action and Wen-Zee term associated to the Hall viscosity can be derived from a single Chern-Simons theory with a gauge connection that takes values in the extended Nappi-Witten algebra. We then provide a new derivation of the chiral boson associated to the gapless edge states from the Wess-Zumino-Witten model that is induced by the Chern-Simons theory on the boundary.