Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial example generation with AdaBelief Optimizer and Crop Invariance (2102.03726v1)

Published 7 Feb 2021 in cs.CV

Abstract: Deep neural networks are vulnerable to adversarial examples, which are crafted by applying small, human-imperceptible perturbations on the original images, so as to mislead deep neural networks to output inaccurate predictions. Adversarial attacks can thus be an important method to evaluate and select robust models in safety-critical applications. However, under the challenging black-box setting, most existing adversarial attacks often achieve relatively low success rates on adversarially trained networks and advanced defense models. In this paper, we propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improves the transferability of adversarial examples. ABI-FGM and CIM can be readily integrated to build a strong gradient-based attack to further boost the success rates of adversarial examples for black-box attacks. Moreover, our method can also be naturally combined with other gradient-based attack methods to build a more robust attack to generate more transferable adversarial examples against the defense models. Extensive experiments on the ImageNet dataset demonstrate the method's effectiveness. Whether on adversarially trained networks or advanced defense models, our method has higher success rates than state-of-the-art gradient-based attack methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Bo Yang (427 papers)
  2. Hengwei Zhang (8 papers)
  3. Yuchen Zhang (112 papers)
  4. Kaiyong Xu (2 papers)
  5. Jindong Wang (150 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.