Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A bandit approach to curriculum generation for automatic speech recognition (2102.03662v1)

Published 6 Feb 2021 in cs.CL, cs.SD, and eess.AS

Abstract: The Automated Speech Recognition (ASR) task has been a challenging domain especially for low data scenarios with few audio examples. This is the main problem in training ASR systems on the data from low-resource or marginalized languages. In this paper we present an approach to mitigate the lack of training data by employing Automated Curriculum Learning in combination with an adversarial bandit approach inspired by Reinforcement learning. The goal of the approach is to optimize the training sequence of mini-batches ranked by the level of difficulty and compare the ASR performance metrics against the random training sequence and discrete curriculum. We test our approach on a truly low-resource language and show that the bandit framework has a good improvement over the baseline transfer-learning model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.