Papers
Topics
Authors
Recent
Search
2000 character limit reached

Edgeworth approximations for distributions of symmetric statistics

Published 6 Feb 2021 in math.ST, math.PR, and stat.TH | (2102.03589v1)

Abstract: We study the distribution of a general class of asymptoticallylinear statistics which are symmetric functions of $N$ independent observations. The distribution functions of these statistics are approximated by an Edgeworth expansion with a remainder of order $o(N{-1})$. The Edgeworth expansion is based on Hoeffding's decomposition which provides a stochastic expansion into a linear part, a quadratic part as well as smaller higher order parts. The validity of this Edgeworth expansion is proved under Cram\'er's condition on the linear part, moment assumptions for all parts of the statistic and an optimal dimensionality requirement for the non linear part.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.