Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edgeworth approximations for distributions of symmetric statistics (2102.03589v1)

Published 6 Feb 2021 in math.ST, math.PR, and stat.TH

Abstract: We study the distribution of a general class of asymptoticallylinear statistics which are symmetric functions of $N$ independent observations. The distribution functions of these statistics are approximated by an Edgeworth expansion with a remainder of order $o(N{-1})$. The Edgeworth expansion is based on Hoeffding's decomposition which provides a stochastic expansion into a linear part, a quadratic part as well as smaller higher order parts. The validity of this Edgeworth expansion is proved under Cram\'er's condition on the linear part, moment assumptions for all parts of the statistic and an optimal dimensionality requirement for the non linear part.

Summary

We haven't generated a summary for this paper yet.