Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Inference of Sparsely-changing Markov Random Fields with Strong Statistical Guarantees

Published 6 Feb 2021 in cs.LG, stat.CO, and stat.ML | (2102.03585v1)

Abstract: In this paper, we study the problem of inferring time-varying Markov random fields (MRF), where the underlying graphical model is both sparse and changes sparsely over time. Most of the existing methods for the inference of time-varying MRFs rely on the regularized maximum likelihood estimation (MLE), that typically suffer from weak statistical guarantees and high computational time. Instead, we introduce a new class of constrained optimization problems for the inference of sparsely-changing MRFs. The proposed optimization problem is formulated based on the exact $\ell_0$ regularization, and can be solved in near-linear time and memory. Moreover, we show that the proposed estimator enjoys a provably small estimation error. As a special case, we derive sharp statistical guarantees for the inference of sparsely-changing Gaussian MRFs (GMRF) in the high-dimensional regime, showing that such problems can be learned with as few as one sample per time. Our proposed method is extremely efficient in practice: it can accurately estimate sparsely-changing graphical models with more than 500 million variables in less than one hour.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.