Papers
Topics
Authors
Recent
Search
2000 character limit reached

Linearized Learning Methods with Multiscale Deep Neural Networks for Stationary Navier-Stokes Equations with Oscillatory Solutions

Published 5 Feb 2021 in math.NA and cs.NA | (2102.03293v2)

Abstract: In this paper, we present linearized learning methods to accelerate the convergence of training for stationary nonlinear Navier-Stokes equations. To solve the stationary nonlinear Navier-Stokes (NS) equation, we integrate the procedure of linearization of the nonlinear convection term in the NS equation into the training process of multi-scale deep neural network approximation of the NS solution. Four forms of linearizations are considered. After a benchmark problem, we solve the highly oscillating stationary flows utilizing the proposed linearized learning with multi-scale neural network for complex domains. The results show that multiscale deep neural network combining with the linearized schemes can be trained fast and accurately.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.