Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Neural Networks based classifiers for categorical inputs (2102.03202v1)

Published 5 Feb 2021 in cs.LG and stat.ML

Abstract: Because of the pervasive usage of Neural Networks in human sensitive applications, their interpretability is becoming an increasingly important topic in machine learning. In this work we introduce a simple way to interpret the output function of a neural network classifier that take as input categorical variables. By exploiting a mapping between a neural network classifier and a physical energy model, we show that in these cases each layer of the network, and the logits layer in particular, can be expanded as a sum of terms that account for the contribution to the classification of each input pattern. For instance, at the first order, the expansion considers just the linear relation between input features and output while at the second order pairwise dependencies between input features are also accounted for. The analysis of the contributions of each pattern, after an appropriate gauge transformation, is presented in two cases where the effectiveness of the method can be appreciated.

Citations (5)

Summary

We haven't generated a summary for this paper yet.