Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Normalizing flows for microscopic many-body calculations: an application to the nuclear equation of state (2102.02726v3)

Published 4 Feb 2021 in nucl-th

Abstract: Normalizing flows are a class of machine learning models used to construct a complex distribution through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are particularly well suited as a Monte Carlo integration framework for quantum many-body calculations that require the repeated evaluation of high-dimensional integrals across smoothly varying integrands and integration regions. As an example, we consider the finite-temperature nuclear equation of state. An important advantage of normalizing flows is the ability to build highly expressive models of the target integrand, which we demonstrate enables precise evaluations of the nuclear free energy and its derivatives. Furthermore, we show that a normalizing flow model trained on one target integrand can be used to efficiently calculate related integrals when the temperature, density, or nuclear force is varied. This work will support future efforts to build microscopic equations of state for numerical simulations of supernovae and neutron star mergers that employ state-of-the-art nuclear forces and many-body methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube