Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine-Learned Phase Diagrams of Generalized Kitaev Honeycomb Magnets (2102.01103v2)

Published 1 Feb 2021 in cond-mat.str-el, cond-mat.mtrl-sci, and cs.LG

Abstract: We use a recently developed interpretable and unsupervised machine-learning method, the tensorial kernel support vector machine (TK-SVM), to investigate the low-temperature classical phase diagram of a generalized Heisenberg-Kitaev-$\Gamma$ ($J$-$K$-$\Gamma$) model on a honeycomb lattice. Aside from reproducing phases reported by previous quantum and classical studies, our machine finds a hitherto missed nested zigzag-stripy order and establishes the robustness of a recently identified modulated $S_3 \times Z_3$ phase, which emerges through the competition between the Kitaev and $\Gamma$ spin liquids, against Heisenberg interactions. The results imply that, in the restricted parameter space spanned by the three primary exchange interactions -- $J$, $K$, and $\Gamma$, the representative Kitaev material $\alpha$-${\rm RuCl}_3$ lies close to the boundaries of several phases, including a simple ferromagnet, the unconventional $S_3 \times Z_3$ and nested zigzag-stripy magnets. A zigzag order is stabilized by a finite $\Gamma{\prime}$ and/or $J_3$ term, whereas the four magnetic orders may compete in particular if $\Gamma{\prime}$ is anti-ferromagnetic.

Citations (8)

Summary

We haven't generated a summary for this paper yet.