Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Adversarial Attacks Against DNN-Based Wireless Communication Systems (2102.00918v1)

Published 1 Feb 2021 in cs.CR

Abstract: Deep Neural Networks (DNNs) have become prevalent in wireless communication systems due to their promising performance. However, similar to other DNN-based applications, they are vulnerable to adversarial examples. In this work, we propose an input-agnostic, undetectable, and robust adversarial attack against DNN-based wireless communication systems in both white-box and black-box scenarios. We design tailored Universal Adversarial Perturbations (UAPs) to perform the attack. We also use a Generative Adversarial Network (GAN) to enforce an undetectability constraint for our attack. Furthermore, we investigate the robustness of our attack against countermeasures. We show that in the presence of defense mechanisms deployed by the communicating parties, our attack performs significantly better compared to existing attacks against DNN-based wireless systems. In particular, the results demonstrate that even when employing well-considered defenses, DNN-based wireless communications are vulnerable to adversarial attacks.

Citations (44)

Summary

We haven't generated a summary for this paper yet.