Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

On radius of convergence of $q$-deformed real numbers (2102.00891v2)

Published 1 Feb 2021 in math.QA

Abstract: We study analytic properties of ``$q$-deformed real numbers'', a notion recently introduced by two of us. A $q$-deformed positive real number is a power series with integer coefficients in one formal variable~$q$. We study the radius of convergence of these power series assuming that $q$ is a complex variable. Our main conjecture, which can be viewed as a $q$-analogue of Hurwitz's Irrational Number Theorem, claims that the $q$-deformed golden ratio has the smallest radius of convergence among all real numbers. The conjecture is proved for certain class of rational numbers and confirmed by a number of computer experiments. We also prove the explicit lower bounds for the radius of convergence for the $q$-deformed convergents of golden and silver ratios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.