Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Settling the Sharp Reconstruction Thresholds of Random Graph Matching (2102.00082v3)

Published 29 Jan 2021 in math.ST, cs.IT, math.IT, stat.ML, and stat.TH

Abstract: This paper studies the problem of recovering the hidden vertex correspondence between two edge-correlated random graphs. We focus on the Gaussian model where the two graphs are complete graphs with correlated Gaussian weights and the Erd\H{o}s-R\'enyi model where the two graphs are subsampled from a common parent Erd\H{o}s-R\'enyi graph $\mathcal{G}(n,p)$. For dense graphs with $p=n{-o(1)}$, we prove that there exists a sharp threshold, above which one can correctly match all but a vanishing fraction of vertices and below which correctly matching any positive fraction is impossible, a phenomenon known as the "all-or-nothing" phase transition. Even more strikingly, in the Gaussian setting, above the threshold all vertices can be exactly matched with high probability. In contrast, for sparse Erd\H{o}s-R\'enyi graphs with $p=n{-\Theta(1)}$, we show that the all-or-nothing phenomenon no longer holds and we determine the thresholds up to a constant factor. Along the way, we also derive the sharp threshold for exact recovery, sharpening the existing results in Erd\H{o}s-R\'enyi graphs. The proof of the negative results builds upon a tight characterization of the mutual information based on the truncated second-moment computation and an "area theorem" that relates the mutual information to the integral of the reconstruction error. The positive results follows from a tight analysis of the maximum likelihood estimator that takes into account the cycle structure of the induced permutation on the edges.

Citations (65)

Summary

We haven't generated a summary for this paper yet.