Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk-sensitive safety analysis using Conditional Value-at-Risk (2101.12086v3)

Published 28 Jan 2021 in eess.SY and cs.SY

Abstract: This paper develops a safety analysis method for stochastic systems that is sensitive to the possibility and severity of rare harmful outcomes. We define risk-sensitive safe sets as sub-level sets of the solution to a non-standard optimal control problem, where a random maximum cost is assessed via Conditional Value-at-Risk (CVaR). The objective function represents the maximum extent of constraint violation of the state trajectory, averaged over a given percentage of worst cases. This problem is well-motivated but difficult to solve tractably because the temporal decomposition for CVaR is history-dependent. Our primary theoretical contribution is to derive computationally tractable under-approximations to risk-sensitive safe sets. Our method provides a novel, theoretically guaranteed, parameter-dependent upper bound to the CVaR of a maximum cost without the need to augment the state space. For a fixed parameter value, the solution to only one Markov decision process problem is required to obtain the under-approximations for any family of risk-sensitivity levels. In addition, we propose a second definition for risk-sensitive safe sets and provide a tractable method for their estimation without using a parameter-dependent upper bound. The second definition is expressed in terms of a new coherent risk functional, which is inspired by CVaR. We demonstrate our primary theoretical contribution via numerical examples.

Citations (45)

Summary

We haven't generated a summary for this paper yet.