Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-synthesis: A fast way to produce effective datasets for stereo matching (2101.10811v1)

Published 26 Jan 2021 in cs.CV

Abstract: Stereo matching is an important problem in computer vision which has drawn tremendous research attention for decades. Recent years, data-driven methods with convolutional neural networks (CNNs) are continuously pushing stereo matching to new heights. However, data-driven methods require large amount of training data, which is not an easy task for real stereo data due to the annotation difficulties of per-pixel ground-truth disparity. Though synthetic dataset is proposed to fill the gaps of large data demand, the fine-tuning on real dataset is still needed due to the domain variances between synthetic data and real data. In this paper, we found that in synthetic datasets, close-to-real-scene texture rendering is a key factor to boost up stereo matching performance, while close-to-real-scene 3D modeling is less important. We then propose semi-synthetic, an effective and fast way to synthesize large amount of data with close-to-real-scene texture to minimize the gap between synthetic data and real data. Extensive experiments demonstrate that models trained with our proposed semi-synthetic datasets achieve significantly better performance than with general synthetic datasets, especially on real data benchmarks with limited training data. With further fine-tuning on the real dataset, we also achieve SOTA performance on Middlebury and competitive results on KITTI and ETH3D datasets.

Citations (9)

Summary

We haven't generated a summary for this paper yet.