Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Approximation Properties for an ODENet and a ResNet: Mathematical Analysis and Numerical Experiments (2101.10229v3)

Published 22 Dec 2020 in cs.LG, cs.AI, cs.NA, math.CA, math.NA, and stat.ML

Abstract: We prove a universal approximation property (UAP) for a class of ODENet and a class of ResNet, which are simplified mathematical models for deep learning systems with skip connections. The UAP can be stated as follows. Let $n$ and $m$ be the dimension of input and output data, and assume $m\leq n$. Then we show that ODENet of width $n+m$ with any non-polynomial continuous activation function can approximate any continuous function on a compact subset on $\mathbb{R}n$. We also show that ResNet has the same property as the depth tends to infinity. Furthermore, we derive the gradient of a loss function explicitly with respect to a certain tuning variable. We use this to construct a learning algorithm for ODENet. To demonstrate the usefulness of this algorithm, we apply it to a regression problem, a binary classification, and a multinomial classification in MNIST.

Citations (2)

Summary

We haven't generated a summary for this paper yet.