Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Integrals Over Bounded Volumes with Smooth Boundaries (2101.09842v5)

Published 25 Jan 2021 in math.NA and cs.NA

Abstract: A Radial Basis Function Generated Finite-Differences (RBF-FD) inspired technique for evaluating definite integrals over bounded volumes that have smooth boundaries in three dimensions is described. A key aspect of this approach is that it allows the user to approximate the value of the integral without explicit knowledge of an expression for the boundary surface. Instead, a tesselation of the node set is utilized to inform the algorithm of the domain geometry. Further, the method applies to node sets featuring spatially varying density, facilitating its use in Applied Mathematics, Mathematical Physics and myriad other application areas, where the locations of the nodes might be fixed by experiment or previous simulation. By using the RBF-FD-like approach, the proposed algorithm computes quadrature weights for $N$ arbitrarily scattered nodes in only $O(N\mbox{ log}N)$ operations with tunable orders of accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.