Incentive Mechanism Design for Federated Learning: Hedonic Game Approach (2101.09673v2)
Abstract: Incentive mechanism design is crucial for enabling federated learning. We deal with clustering problem of agents contributing to federated learning setting. Assuming agents behave selfishly, we model their interaction as a stable coalition partition problem using hedonic games where agents and clusters are the players and coalitions, respectively. We address the following question: is there a family of hedonic games ensuring a Nash-stable coalition partition? We propose the Nash-stable set which determines the family of hedonic games possessing at least one Nash-stable partition, and analyze the conditions of non-emptiness of the Nash-stable set. Besides, we deal with the decentralized clustering. We formulate the problem as a non-cooperative game and prove the existence of a potential game.