Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effects of Pre- and Post-Processing on type-based Embeddings in Lexical Semantic Change Detection (2101.09368v2)

Published 22 Jan 2021 in cs.CL

Abstract: Lexical semantic change detection is a new and innovative research field. The optimal fine-tuning of models including pre- and post-processing is largely unclear. We optimize existing models by (i) pre-training on large corpora and refining on diachronic target corpora tackling the notorious small data problem, and (ii) applying post-processing transformations that have been shown to improve performance on synchronic tasks. Our results provide a guide for the application and optimization of lexical semantic change detection models across various learning scenarios.

Citations (10)

Summary

We haven't generated a summary for this paper yet.