Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Local Linear Rate of Consensus on the Stiefel Manifold (2101.09346v1)

Published 22 Jan 2021 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: We study the convergence properties of Riemannian gradient method for solving the consensus problem (for an undirected connected graph) over the Stiefel manifold. The Stiefel manifold is a non-convex set and the standard notion of averaging in the Euclidean space does not work for this problem. We propose Distributed Riemannian Consensus on Stiefel Manifold (DRCS) and prove that it enjoys a local linear convergence rate to global consensus. More importantly, this local rate asymptotically scales with the second largest singular value of the communication matrix, which is on par with the well-known rate in the Euclidean space. To the best of our knowledge, this is the first work showing the equality of the two rates. The main technical challenges include (i) developing a Riemannian restricted secant inequality for convergence analysis, and (ii) to identify the conditions (e.g., suitable step-size and initialization) under which the algorithm always stays in the local region.

Citations (13)

Summary

We haven't generated a summary for this paper yet.