Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beurling-type density criteria for system identification (2101.09341v1)

Published 22 Jan 2021 in cs.IT, cs.SY, eess.SY, math.FA, and math.IT

Abstract: This paper addresses the problem of identifying a linear time-varying (LTV) system characterized by a (possibly infinite) discrete set of delay-Doppler shifts without a lattice (or other geometry-discretizing) constraint on the support set. Concretely, we show that a class of such LTV systems is identifiable whenever the upper uniform Beurling density of the delay-Doppler support sets, measured uniformly over the class, is strictly less than 1/2. The proof of this result reveals an interesting relation between LTV system identification and interpolation in the Bargmann-Fock space. Moreover, we show that this density condition is also necessary for classes of systems invariant under time-frequency shifts and closed under a natural topology on the support sets. We furthermore show that identifiability guarantees robust recovery of the delay-Doppler support set, as well as the weights of the individual delay-Doppler shifts, both in the sense of asymptotically vanishing reconstruction error for vanishing measurement error.

Summary

We haven't generated a summary for this paper yet.