Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

A Newton's Iteration Converges Quadratically to Nonisolated Solutions Too (2101.09180v4)

Published 22 Jan 2021 in math.NA and cs.NA

Abstract: The textbook Newton's iteration is practically inapplicable on solutions of nonlinear systems with singular Jacobians. By a simple modification, a novel extension of Newton's iteration regains its local quadratic convergence toward nonisolated solutions that are semiregular as properly defined regardless of whether the system is square, underdetermined or overdetermined while Jacobians can be rank-deficient. Furthermore, the iteration serves as a regularization mechanism for computing singular solutions from empirical data. When a system is perturbed, its nonisolated solutions can be altered substantially or even disappear. The iteration still locally converges to a stationary point that approximates a singular solution of the underlying system with an error bound in the same order of the data accuracy. Geometrically, the iteration approximately approaches the nearest point on the solution manifold. The method simplifies the modeling of nonlinear systems by permitting nonisolated solutions and enables a wide range of applications in algebraic computation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.