Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Knowledge Gradient-based Method for Constrained Bayesian Optimization (2101.08743v1)

Published 20 Jan 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Black-box problems are common in real life like structural design, drug experiments, and machine learning. When optimizing black-box systems, decision-makers always consider multiple performances and give the final decision by comprehensive evaluations. Motivated by such practical needs, we focus on constrained black-box problems where the objective and constraints lack known special structure, and evaluations are expensive and even with noise. We develop a novel constrained Bayesian optimization approach based on the knowledge gradient method ($c-\rm{KG}$). A new acquisition function is proposed to determine the next batch of samples considering optimality and feasibility. An unbiased estimator of the gradient of the new acquisition function is derived to implement the $c-\rm{KG}$ approach.

Citations (6)

Summary

We haven't generated a summary for this paper yet.